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1 Introduction

The aitools library is a C++ library that contains a few data structures and algorithms related to AI, see
https://github.com/wiegerw/aitools.It currently supports binary decision trees, random forests, probabilistic
circuits, generative forests and some algorithms. It was originally intended as a companion library for the
paper Joints in Random Forests, see [2], but it was never used as such.

This document contains precise mathematical speci�cations of the data structures and algorithms that are
used in the aitools library. This is not a tutorial, so it is assumed that the reader is already familiar with
the material. In Appendix A some notation used in the algorithms is explained.

2 Graphs

Let G = (V,E) with E ⊆ V × V be a directed graph. We write u→ v whenever (u, v) ∈ E. Let →∗ be the
re�exive-transitive closure of →. We de�ne

pred(v) = {u ∈ V | u→ v}

succ(u) = {v ∈ V | u→ v}

desc(u) = {v ∈ V | u→∗ v}
A node u is called a leaf or terminal node if succ(u) = ∅.

A topological ordering of an acyclic graph G is a linear ordering of the vertices V such that for every directed
edge (u, v) ∈ E we have that u comes before v in the ordering. In the context of probabilistic circuits, this
ordering is also known as feedforward order.

3 Random variables

Let X = {X1, . . . , Xm} be a set of random variables or features. We assume that each continuous variable Xi

assumes values in some compact set Xi ⊆ R and each discrete variable Xi assumes values in Xi = {1, . . . ,Ki},
where Ki is the number of states for Xi. The feature space is denoted as

X = X1 × . . .Xm.

Let D = {x1, . . . , xn} be a data set for the variables X. Elements of D may have missing values, which
we denote with the symbol ⊥. Hence

xij ∈ Xi ∪ {⊥} (1 ≤ i ≤ m, 1 ≤ j ≤ n).
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In classi�cation problems, there is also an output variable Y (the class variable) that assumes values
in Y = {1, . . . ,K}. A data set for a classi�cation problem consists of pairs of inputs and outputs: D =
{(x1, y1), . . . , (xn, yn)} with yi ∈ Y.

We de�ne the function project that projects a data set D on coordinate i as follows:

project(D, i) = {xi | x ∈ D}.

We de�ne the function ncat that operates on random variables Xi ∈ X as follows:

ncat(Xi,D) = |project(D, i)|,

In particular we have
ncat(Xi) = ncat(Xi,Xi).

Furthermore we de�ne the function counts that counts the number of samples in class k as:

count(D, k) = |{(xi, yi) ∈ D | yi = k}|.

3.1 The Kendall rank correlation test

Let (x1, y1), ..., (xn, yn) be a set of observations of the joint random variables X and Y , such that all the
values of (xi) and (yi) are unique (the ties are neglected for simplicity). Any pair of observations (xi, yi)
and (xj , yj), where i < j, are said to be concordant if the sort order of (xi, xj) and (yi, yj) agrees: that is, if
either both xi > xj and yi > yj holds or both xi < xj and yi < yj ; otherwise they are said to be discordant.

The Kendall τ coe�cient is de�ned as:

τ =
2

n(n− 1)

∑
i<j

sgn(xi − xj) sgn(yi − yj),

where

sgn(x) =


−1, x < 0

0, x = 0

1, x > 0

Let (X1, Y1), . . . (Xn, Yn) be a sample of n pairs of observations. The rank correlation coe�cient τ of Kendall
is de�ned as

τ = 1− 2Kn(
n
2

) ,
where Kn is the number of inversions: the number of pairs {(Xi, Yi), (Xj , Yj)} such that Xi < Xj and
Yi > Yj for i < j, i = 1, . . . n− 1 and j = 2, . . . n.

4 Probability distributions

4.1 Uniform distribution

A continuous uniform distribution on an interval [a, b] is denoted as U(a, b), and has the following probability
density function:

f(x) =

{
1

b−a for a ≤ x ≤ b

0 otherwise
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and cumulative density function

F (x) =


0 for x < a
x−a
b−a for a ≤ x ≤ b

1 for x > b

4.2 Normal distribution

A normal or Gaussian distribution N (µ, σ) is a distribution with the following probability density function:

ϕ(µ, σ;x) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

and cumulative distribution function

Φ(µ, σ;x) =
1

σ
√
2π

x∫
−∞

e
−(t−µ)2

2σ2 dt,

The parameter µ is the mean, and σ is the standard deviation of the normal distribution. The function Φ
can be expressed in terms of the error function as follows:

Φ(µ, σ;x) =
1

2
(1 + erf(

(x− µ)/σ√
2

)).

Φ−1(µ, σ;x) = µ+ σ
√
2 erf−1(2x− 1).

Sampling a normal distribution can be done by �rst randomly drawing a value p ∼ U(0, 1) and then trans-
forming it to a value x using

x = µ+ σ · Φ−1(0, 1; p) = µ+ σ ·
√
2 erf−1(2p− 1).

4.3 Standard normal distribution

The standard normal distribution is N (0, 1). It has the following cumulative distribution function:

Φ(x) =
1√
2π

x∫
−∞

e−t2/2dt,

which is closely related to the error function erf:

erf(x) =
2√
π

x∫
−∞

e−t2dt.

We have
Φ−1(x) =

√
2 erf−1(2x− 1).

4.4 Truncated normal distribution

A truncated normal distribution is obtained from a normal distribution N (µ, σ) by truncating it to an
interval [a, b] and then scaling it appropriately, see also [4]. It has the following probability density function:

ψ(µ, σ, a, b;x) =


0 if x < a

ϕ(µ,σ;x)
Φ(µ,σ;b)−Φ(µ,σ;a) if a ≤ x ≤ b

0 if x > b,
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where µ and σ are the parameters of the original distribution. The cumulative density function is given by

Ψ(µ, σ, a, b;x) =


0 if x < a

Φ(µ,σ;x)−Φ(µ,σ;a)
Φ(µ,σ;b)−Φ(µ,σ;a) if a ≤ x ≤ b

1 if x > b.

and the inverse by

Ψ−1(µ, σ, a, b;x) = Φ−1(µ, σ; Φ(µ, σ; a) + x · (Φ(µ, σ; b)− Φ(µ, σ; a)))

Sampling a truncated normal distribution can be done by �rst drawing a value p ∼ U(0, 1) and then
transforming it to a value x using

x = Ψ−1(µ, σ, a, b; p).

4.5 Bernoulli distribution

A categorical distribution is a discrete probability distribution that takes the value 1 with probability p and
the value 0 with probability 1− p. The probability mass function is given by

f(x = i) = pi.

4.6 Categorical distribution

A categorical distribution is a discrete probability distribution that models the possible results of a random
variable that can take on one of K possible categories, with the probability of each category separately
speci�ed. It is characterized by k probabilities [p1, . . . , pk] with pi ≥ 0 and

∑k
i=1 pi = 1. The probability

mass function is given by

f(x = i) =

{
p if i = 1

1− p if i = 0

4.7 Multinomial distribution

A multinomial distribution is a discrete probability distribution that models the probability of counts for
each side of a k-sided die rolled n times. It is characterized by k probabilities [p1, . . . , pk] with pi ≥ 0 and∑k

i=1 pi = 1, and a number of trials n. The probability mass function is given by

f(x1, . . . , xn) =
n!

x1! . . . xk!
px1
1 . . . pxk

k .

5 Decision trees

A decision tree (DT) is a tree G = (V,E) that is used to partition the feature space X into a number of
disjoint subsets. We denote the root of the tree as root(G). Each node u of the tree is associated with a subset
Xu ⊆ X of the feature space. We have Xroot(G) = X . Each non-terminal node u is labeled with a decision
tree classi�er split(u) that partitions X into disjoint subsets {U1, . . . Up}, and such that Xvi = Xu ∩ Ui,
for vi ∈ succ(u). In particular we have that the leaf nodes of G de�ne a partition of the feature space:
X = ∪{Xv | v ∈ V ∧ succ(v) = ∅}.

A decision tree is usually de�ned over a data set D. Each node u is associated with the subset Du = Xu∩D.
We de�ne count(u) = |Du|.
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5.1 Decision tree classi�ers

This section gives an overview of the supported decision tree classi�ers. Currently, all of them are binary
splits, i.e. they partition the feature space in two subsets. For each classi�er, a function partition-number is
de�ned that assigns a partition to each element x of the feature space. In case of a binary split, the partition
numbers are 1 and 2. Furthermore, a function domain is de�ned that speci�es for each variable the part of
the domain where it can be nonzero. For the root u of the decision tree, we have domain(u,Xi) = Xi for
each variable Xi ∈ X.

Single split

A single split SingleSplit(Xi, v) is an axis-aligned split de�ned by a discrete random variable Xi with domain
Xi and a value v ∈ Xi. We de�ne

partition-number(SingleSplit(Xi, v), x) =

{
1 if xi = v

2 otherwise.

domain(v1, Xi) = {v}
domain(v2, Xi) = domain(u,Xi) \ {v},

where succ(u) = {v1, v2}. For other variables Xj (j ̸= i), we have domain(v1, Xj) = domain(v2, Xj) =
domain(u,Xj).

Subset split

A subset split SubsetSplit(Xi, V ) is an axis-aligned split that is de�ned by a discrete random variable Xi

with domain Xi and a set of values V ⊆ Xi.

partition-number(SubsetSplit(Xi, V ), x) =

{
1 if xi ∈ V

2 otherwise.

domain(v1, Xi) = domain(u,Xi) ∩ V
domain(v2, Xi) = domain(u,Xi) \ V,

where succ(u) = {v1, v2}. For other variables Xj (j ̸= i), we have domain(v1, Xj) = domain(v2, Xj) =
domain(u,Xj).

Threshold split

A threshold split ThresholdSplit(Xi, v) is an axis-aligned split de�ned by a continuous random variable Xi

with domain Xi and value v ∈ Xi. We de�ne

partition-number(ThresholdSplit(Xi, v), x) =

{
1 if xi < v

2 otherwise.

domain(v1, Xi) = domain(u,Xi) ∩ (−∞, v)
domain(v2, Xi) = domain(u,Xi) ∩ [v,+∞),

where succ(u) = {v1, v2}. For other variables Xj (j ̸= i), we have domain(v1, Xj) = domain(v2, Xj) =
domain(u,Xj).

Applying a splitting criterion to a data set

When constructing a decision tree, a splitting criterion is used to partition a data set. Let D be a data set, and
let u be a decision tree node with scopeXi, splitting criterion split, and with successors succ(u) = {v1, . . . , vp}.
Then

apply-split(split,D) = [{x ∈ D | partition-number(split, x) = 1}, . . . , {x ∈ D | partition-number(split, x) = p}].
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Indicator functions

Each decision tree classi�er split associated with node u naturally de�nes an indicator function for each
outgoing edge. We de�ne

indicator(u, j) = 1Xj ,

where
Xj = {x ∈ X | partition-number(split, x) = j}.

Missing values

When the data set contains missing values for variable Xi, the following approach is taken. When computing
the gain of a split, samples x with xi = ⊥ are simply ignored. When partitioning a data set using a split,
the samples with xi = ⊥ are randomly assigned to one of the partitions.

5.2 Executing a decision tree

Let x ∈ X be an arbitrary element of the feature space. The algorithms below determines a leaf node to
which x corresponds.

Algorithm 1 Executing a decision tree

Input: A decision tree G = (V,E) and a sample x ∈ X
Output: A leaf node v ∈ V .

1: function Predict(G = (V,E), x)
2: u := root(G)
3: let succ(u) = {v1, . . . , vp}
4: while true do

5: if succ(u) = ∅ then

6: break

7: j := partition-number(split(u), x) ▷ split(u) is the split criterion of node u
8: u := vj

9: return u

5.3 Learning a decision tree

In this section we describe an algorithm for learning a decision tree for a classi�cation problem with data set
D = {(x1, y1), . . . , (xn, yn)} that is de�ned on random variables X = {X1, . . . , Xm} and class variable Y .

Impurity measures

There are several impurity measures of a data set D that can be used to select a suitable split. The Gini
index and the cross-entropy are two impurity measures on a data set that are de�ned as follows (see also
[3]):

gini-index(D) =

K∑
k=1

pk(1− pk) = 1−
K∑

k=1

p2k

cross-entropy(D) = −
K∑

k=1

pk log(pk)

where pk = count(D, k) / |D|, i.e. the proportion of samples of class k in D. Furthermore we de�ne

purity(D) = max
1≤k≤K

pk.
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Choosing a best split

Suppose we have a data set D, and a splitter that splits D into {D1, . . . ,Dp}. Given an impurity measure
imp, the quality of the split is then measured by

gain(D, {D1, . . . ,Dp}, imp) = imp(D)−
p∑

i=1

|Di|
|D|

imp(Di).

A splitter with the maximum gain is selected. In practice we use the simpli�ed expression below to determine
the maximum:

gain1({D1, . . . ,Dp}, imp) = −
p∑

i=1

|Di|imp(Di).

This function gives the same results, but is more e�cient to compute.

Algorithm 2 Learning a decision tree

Input: A training set D = {(x1, y1), . . . , (xn, yn)} that is de�ned on random variables X = {X1, . . . , Xm}
and class variable Y ; the maximum number of split variables M , (1 ≤ M ≤ m); a family of split functions
Splits; a function gain to measure the quality of a split; a criterion stop for ending the recursion.
Output: A decision tree (V,E).

1: function LearnDecisionTree(D,M,Splits, gain, stop)
2: choose u0 ∈ V ▷ u0 is a fresh node, taken from a universal set of nodes V
3: V := {u0}
4: E := ∅
5: Du0

:= D
6: todo := {u0}
7: while todo ̸= ∅ do
8: choose u ∈ todo
9: todo := todo \ {u}

10: if stop(Du) then
11: continue

12: Z := random-sample(X,M) ▷ Z ⊆ X is a random subset of size M
13: A := argmax

split∈Splits(Du,Z)

gain(apply-split(split,Du))

14: if A = ∅ then continue
▷ A = ∅ means that no suitable split is found

15: choose split ∈ A
16: for D ∈ apply-split(split,Du) do
17: choose v ∈ V \ V ▷ v is a fresh node
18: V := V ∪ {v}
19: E := E ∪ {(u, v)}
20: todo := todo ∪ {v}
21: Dv := D

22: return (V,E)

Split families

The family of split functions Splits(D,Z) that is considered can for example be chosen as follows:

Splits(D,Z) = {SingleSplit(Xi, v) | Xi ∈ Z ∧ ncat(Xi) ≤ 5 ∧ v ∈ project(D, i)} ∪
{ThresholdSplit(Xi, v) | Xi ∈ Z ∧ ncat(Xi) > 5 ∧ v ∈ project(D, i)}.

.
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Stop criterion

A possible stop criterion is

stop(Du) = |Du| ≤ min-samples-leaf ∨mis-classi�cation(Du) ≤ 0.01 ∨ depth(u) > max-depth

where min-samples-leaf is a user de�ned constant and depth(u) is the distance between the root of the decision
tree and u.
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6 Random forests

A random forest is a union of decision trees {Gi = (Vi, Ei)}i∈I that are all de�ned on the same feature space
X . The trees are disjoint, i.e. Vi ∩ Vj = ∅ for i ̸= j.

6.1 Learning a random forest

The following algorithm is used to learn a random forest from a training set D = {x1, . . . , xn} that is de�ned
on random variables X = {X1, . . . , Xm}.

Algorithm 3 Learning a random forest

Input: A training set D = {x1, . . . , xn} that is de�ned on random variables X = {X1, . . . , Xm}; a function
sample that draws a sample of D; a fraction p ∈ [0, 1] that determines the size of the sample; the number d
of decision trees in the forest; the maximum number of split variables M , (1 ≤ M ≤ m); a family of split
functions Splits; a function gain to measure the quality of a split; a criterion stop for ending the recursion.
Output: A random forest

1: function LearnRandomForest(D,X, sample, p, d,M,Splits, gain, stop)
2: result := ∅
3: for 1 ≤ i ≤ d do

4: D′ := sample(D, p) ▷ |D′| ≃ p|D|
5: result := result ∪ LearnDecisionTree(D′,M,Splits, gain, stop)

6: return result
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7 Probabilistic circuits

A probabilistic circuit (PC) is a rooted directed acyclic graph G = (V,E). Each terminal node (also called
distribution node) represents a multivariate probabilistic distribution. We denote the root of the PC G as
root(G). There are two types of non-terminal nodes: sum nodes and product nodes, and there are many
di�erent kinds of terminal nodes, see also [1]. For each node u ∈ V an evaluation function evi(u, x) is de�ned
that is used to compute the probability of the node, where x ∈ X is a given sample.

7.1 De�nitions

We denote the set of random variables that correspond to terminal node v as scope(v). This de�nition is
extended to a non-terminal node u using

scope(u) = ∪{scope(v) | v ∈ desc(u) ∧ succ(v) = ∅}.

An unnormalized distribution is any nonnegative function Φ(x) where ∃x : Φ(x) > 0.

For each random variable Xi and each t ∈ Xi we de�ne an indicator variable λXi=t, which is a function on
X de�ned as

λXi=t(x) =

{
1 if xi = t

0 otherwise.

De�nition 1 (Network Polynomial) Let Φ be an unnormalized probability distribution over random variables
X with �nitely many states and λ their indicator variables. The network polynomial fΦ of Φ is de�ned as

fΦ(λ) :=
∑
x∈X

Φ(x)
∏

λXi=t∈λ

λXi=t.

De�nition 2 (SPN Distribution) Let S be a Sum-product network over X. The distribution represented by
S is de�ned as

PS(x) :=
evi(root(S), x)∑

x′∈X
evi(root(S), x′)

.

De�nition 3 (Smoothness a.k.a. completeness) A sum node u is called called smooth if its children have
the same scope: scope(v) = scope(w) for any v, w ∈ succ(u). A PC P is called smooth if every sum node in
P is smooth.

De�nition 4 (Consistency) A product node u is called called consistent if ∀v, w ∈ succ(u), v ̸= w it holds
that λX=x ∈ desc(v) ⇒ ∀x′ ̸= x : λX=x′ /∈ desc(w).

De�nition 5 (Decomposability) A product node u is called decomposable if its children have non-overlapping
scopes: scope(v) ∩ scope(w) = ∅ for any v, w ∈ succ(u) with v ̸= w. A PC is called decomposable if all its
product nodes are decomposable.

De�nition 6 (Shared random variables) A random variable X is a shared random variable of product node
u if there are v, w ∈ succ(u) with v ̸= w such that X ∈ scope(v) ∩ scope(w).

De�nition 7 (Locally normalized) A sum node u is called called locally normalized if the weights of its
outgoing edges sum to 1. A PC P is called locally normalized if every sum node in P is locally normalized.

De�nition 8 (Deterministic) A PC is called deterministic if it holds that for each complete sample x ∈ X ,
each sum node has at most one non-zero child.
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7.2 Nodes in a probabilistic circuit

This section gives an overview of the nodes in a PC that are supported. We use the convention that for
every node u the function evi returns the value 1 for missing data (denoted as ⊥):

evi(u,⊥) = 1.

Sum nodes

A sum node u = Sum([w1, . . . , wp]) is a non-terminal node with [w1, . . . , wp] the edge weights of the outgoing
edges. Let succ(u) = {v1, . . . , vp}. We have 0 ≤ wi (1 ≤ i ≤ p).

evi(u, x) =
m∑
i=1

wi evi(vi, x)

Sum split nodes

A sum split node u = SumSplit([w1, . . . , wp], split) is an extension of a sum node with a decision tree classi�er
split. Note that this is not a standard node of probabilistic circuits, but it is used by generative forests that
are discussed in section 8. The decision tree quali�er split is used to ensure that only one of the successors
of u can have a non-zero evaluation:

evi(u, x) = wj · evi(vj , x) with j = partition-number(split, x).

Product nodes

A product node u = Product() is a non-terminal node. Let succ(u) = {v1, . . . , vp}. We have

evi(u, x) =
m∏
i=1

evi(vi, x)

Normal nodes

A normal node u = Normal(Xi, µ, σ) is a terminal node that models a normal distribution N (µ, σ) for
random variable Xi. We have

evi(u, x) = ϕ(µ, σ;xi).

Truncated normal nodes

A truncated normal node u = TruncatedNormal(Xi, µ, σ, a, b) is a terminal node that models a truncated
normal distribution N (µ, σ) on an interval [a, b] for random variable Xi. We have

evi(u, x) = ψ(µ, σ, a, b;xi).

Categorical nodes

A categorical node u = Categorical(Xi, [p1, . . . , pk]) is a terminal node that models a categorical distribution
with probabilities [p1, . . . , pk] for random variable Xi. It is only de�ned for integer values x ∈ [1, . . . , k]. We
have

evi(u, x) = pxi
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Equal nodes

An equal node u = Equal(Xi, t) is a degenerate case of a categorical distribution with probability 1 for a
single integer value i ∈ N for random variable Xi. It should only be evaluated for integer values x ∈ N.

evi(u, x) =

{
1 if xi = t

0 otherwise

Not equal nodes

A not-equal node u = NotEqual(Xi, t) is a degenerate case of a categorical distribution with probability 1
for integer values not equal to a value i ∈ N for random variable Xi. It should only be evaluated for integer
values x ∈ N.

evi(u, x) =

{
1 if xi ̸= t

0 otherwise

Less nodes

A less node u = Less(Xi, t) evaluates to 1 for values less than a given threshold t for random variable Xi.

evi(u, x) =

{
1 if xi < t

0 otherwise

Greater-equal nodes

A greater node u = GreaterEqual(Xi, t) evaluates to 1 for values greater than or equal to a given threshold
t for random variable Xi.

evi(u, x) =

{
1 if xi ≥ t

0 otherwise

Subset nodes

A subset node u = Subset(Xi, V ) evaluates to 1 for values in a set V for random variable Xi.

evi(u, x) =

{
1 if xi ∈ V

0 otherwise
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7.3 Inference

Algorithm 4 Iterative computation of an EVI query

Input: A probabilistic circuit G = (V,E) over random variables X and a complete state x ∈ X .
Output: A probability.

1: function EVI-Iterative(G, x)
2: U := topological-ordering(G)
3: c := {7→} ▷ c ⊂ U × R is an empty mapping
4: for u ∈ U do

5: let succ(u) = [v1, . . . , vp]
6: if u = Sum([w1, . . . , wp]) then
7: c[u] :=

∑p
j=1 wj · c[vj ]

8: else if u = SumSplit([w1, . . . , wp], split) then
9: j := partition-number(split, x)

10: c[u] := wj · c[vj ]
11: else if u = Product() then
12: c[u] :=

∏p
j=1 c[vj ]

13: else ▷ u is a terminal node
14: c[u] := evi(u, x)

15: return c[U [−1]] ▷ The last node U [−1] is the root of the PC

Algorithm 5 Recursive computation of an EVI query

Input: A probabilistic circuit G = (V,E) over random variables X and a complete state x ∈ X .
Output: A boolean value.

1: function EVI-Recursive(G, x)
2: return evi(root(G), x)
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7.4 Sampling

We start at the root node. If we have a sum node, we pick one of the children by sampling from the categorical
distribution de�ned by the weights of the sum node�intuitively, we will pick the child with largest weight
more often�and sample from it. If we have a product node, we sample from all of its children. If we have a
distribution node, we just sample from its distribution and write the value into the corresponding variable
in our sample.

In this algorithm we start of with an empty vector x, and write values to it once we reach a leaf. Note
that we sample each variable only once, so the set of scopes of the leaves the function reaches will form a
partition of the scope.

Algorithm 6 Sampling

Input: The root node u of the PC one wants to sample from, a vector x where we store the sample.
Output: A sample x.

1: function Sample(u,x)
2: let succ(u) = [v1, . . . , vp]
3: if u = Sum([w1, . . . , wp]) then ▷ If sum node.
4: j ∼ Categorical(.|[w1, . . . , wp])) ▷ Choose a child according to distribution given by the weights.
5: Sample(vj ,x) ▷ Sample from the chosen child.
6: else if u = Product() then ▷ If product node.
7: for vj ∈ succ(u) do ▷ Sample from every child.
8: Sample(vj ,x)

9: else ▷ A leaf node with a distribution parameterised by θ.
10: x[scope(u)] ∼ Distribution(.|θ)

7.5 Learning a sum-product network

Algorithm 7 Learning a Probabilistic Circuit with LearnSPN

Input: A training set D = {x1, . . . , xn} that is de�ned on a set random variables X ; A function isplit that
splits the set of variables X into independent sets; A function cluster that splits the instances in D into K
clusters.
Output: A Probabilistic Circuit (V,E).

1: function LearnSPN(D,X , isplit, cluster,K)
2: if |X | = 1 then ▷ we have a single variable in the scope.
3: return univariate distribution node �tted on D.
4: else

5: X1, . . . ,XJ = isplit(D,X ).
6: if J > 1 then ▷ we found at least one independence relationship.
7: return

∏
j LearnSPN(D,Xj , isplit, cluster,K) ▷ add a prod. node with one child for each Xj .

8: else

9: D1, . . . ,DK = cluster(D,X ,K).
10: return

∑
k LearnSPN(Dk,X , isplit, cluster,K) ▷ add a sum node with one child for each Dk.

The isplit function needs to identify whether there is any independence relationship in a set of variables.
This typically means iterating through each possible pair (Xi, Xj) ∈ X and running an independence test:
Kendall (Xi and Xj continuous), chi-square (Xi and Xj discrete), or Kruskal (one continuous, one discrete).
The cluster function is usually just K-means with K=2.
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8 Generative forests

A generative forest (GeF) is a probabilistic circuit that is derived from a random forest. The structure of
the underlying forest is preserved, and also the decision tree classi�ers (splitters) are encoded in the PC.

8.1 Converting a random forest to a generative forest

A decision tree G = (V,E) de�ned over a data set D can be straightforwardly converted into a generative for-
est G′ as follows, see also [2]. The graph G′ = (V ′, E′) contains an isomorphic copy of G. Each non-terminal
node u ∈ V with decision tree classi�er split is transformed into a sum split node SumSplit([w1, . . . , wp], split),
with wj = |Dvj |/|Du| for all vj ∈ succ(u). Each leaf node u ∈ V is transformed into a small PC that �ts a
distribution to the samples in Du. By default u is transformed into a tree Gu = (Vu, Eu) that consists of a
product node with an outgoing edge for each random variable Xi as follows:

Vu = {u, v1, . . . , vm}
Eu = {(u, v1), . . . , (u, vm)}
u = Product()

vj =

{
�t-normal(u,Xi) if Xi is continuous

�t-categorical(u,Xi, α) otherwise

For a continuous variable Xi we de�ne

�t-normal(u,Xi) =

{
TruncatedNormal(Xi,mean(Di), stddev(Di), a, b) if |Di| > 0

TruncatedNormal(Xi, 0, 1, a, b) otherwise,

where Di = {xi | x ∈ Du} \ {⊥}, and where a and b are chosen such that domain(u,Xi) ⊆ [a, b].

For a categorical variable Xi and a given Laplace smoothing factor α we de�ne

�t-categorical(u,Xi, α) = Categorical(Xi, [p1, . . . , pncat(Xi)]),

where

pk =
|{x ∈ Du | xi = k}|+ α

|{x ∈ Du | xi ̸= ⊥}|+ α · ncat(Xi)
.

If the number of samples Du is larges (say ≥ 30), then the node u can be transformed into a sum-product
network using the LearnSPN algorithm, see section 7.5.

A random forest {Gi = (Vi, Ei)}Ni=1 is converted to a generative forest by �rst converting each decision
tree Gi into a PC G′

i, and then add a new root node r = Sum([ 1N , . . . ,
1
N ]) with outgoing edges (r, root(G′

i))
for i = 1 . . . N .

8.2 Converting a generative forest to a probabilistic circuit

A generative forest can be converted to an equivalent PC by expanding the sum split nodes. Node u =
SumSplit([w1, . . . , wp], split) is replaced by u = Sum([w1, . . . , wp]). Each edge (u, vj) is replaced by a subgraph
(Vu, Eu) with

Vu = {u, yj , zj , vj}
Eu = {(u, yj), (yj , vj), (yj , zj)}
yj = Product()
zj = make-indicator-node(u, j),

where yj and zj are fresh nodes, and

15



make-indicator-node(SingleSplit(Xi, v), 0) = Equal(Xi, v)
make-indicator-node(SingleSplit(Xi, v), 1) = NotEqual(Xi, v)
make-indicator-node(SubsetSplit(Xi, V ), 0) = Subset(Xi, V )
make-indicator-node(SubsetSplit(Xi, V ), 1) = Subset(Xi, V

C)
make-indicator-node(ThresholdSplit(Xi, v), 0) = Less(Xi, v)
make-indicator-node(ThresholdSplit(Xi, v), 1) = GreaterEqual(Xi, v)
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A Pseudocode

This section describes the pseudocode conventions and data structures that are used in this document.

A.1 Attributes

In many algorithms objects are manipulated that have various attributes. For example a node u in a graph
might be assigned the label a, and a common way to denote this is using the statement u.label := a. We
do not allow this kind of object oriented notation. Instead our way to handle this is to introduce a global
mapping label, and to write label[u] := a instead. This is done to keep the amount of concepts used in
the pseudocode as small as possible. In an actual implementation it may be very ine�cient to store these
attributes in a separate mapping. But we consider it obvious that the implementer has the freedom to choose
an e�cient way to store a mapping.

A.2 Lists

Let l and m be lists, and i, j natural numbers. We use the following notations:

Expression Meaning Precondition

[ ] The empty list
[a, b, c] The list with elements a, b and c
|l| The number of elements in l
l[i] The element at position i 0 ≤ i < |l|
l[−i] The element at position |l| − i 0 < i ≤ |l|
l[i : j] The sublist [l[i], . . . , l[j − 1]] 0 ≤ i ≤ j < |l|
l[i :] l[i : |l| − 1] 0 ≤ i ≤ |l|
l[: i] l[0 : i] 0 ≤ i ≤ |l|
l ++m The concatenation of l and m
a ∈ l ∃i : 0 ≤ i < |l| : l[i] = a
index(l, a) The smallest value i such that l[i] = a a ∈ l

Table 1: List operations

A.3 Mappings

We de�ne a mapping as a set of (key, value) pairs. Let m ⊆ V ×W be a mapping, and let v ∈ V and w ∈W
be two values. We use the following notations:

Expression Meaning Precondition

{7→} The empty mapping
keys(m) {v ∈ V | ∃w ∈W : (v, w) ∈ m}
values(m) {w ∈W | ∃v ∈ V : (v, w) ∈ m}
m[v] The value w ∈W such that (v, w) ∈ m v ∈ keys(m)
v ∈ m v ∈ keys(m)

Table 2: Map operations
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