Nerva Library Specifications

Wieger Wesselink
April 10, 2025

Contents
(1__Introductionl 1
2 Mathematical background| 2
[3 Matrix operations| 4
|4 Layer equations| 5
M1 Derivationd 9
B Activation T ons) 12
b1 Softmax functionsl e 12
B2 Derivations] L 13
6 Loss functions| 13
6.1 Derivations e 15
|7 Weight initialization| 15
8 Optimization| 16
9 Learning Rate Schedulers| 16
[A Column-wise layer equations| 18
[B_Column-wise softmax functions| 21
[CColumn-wise loss functions| 21

1 Introduction

This document contains algorithm specifications for the Nerva Libraries https://github.com/wiegerw/
nerva. The goal of this document is to provide precise mathematical specifications of key parts of the
implementation. The sections[d] (layer equations), (softmax functions) and [f] (loss functions) in the main
text assume that data sets are stored in row-wise format, which is the default. These equations are used in
the following repositories:

e https://github.com/wiegerw/nerva-rowwise
e https://github.com/wiegerw/nerva-jax

e https://github.com/wiegerw/nerva-numpy

https://github.com/wiegerw/nerva
https://github.com/wiegerw/nerva
https://github.com/wiegerw/nerva-rowwise
https://github.com/wiegerw/nerva-jax
https://github.com/wiegerw/nerva-numpy

e https://github.com/wiegerw/nerva-tensorflow

e https://github.com/wiegerw/nerva-torch

The appendices contain equations that apply to data sets in column-wise format. These are used in the
repository https://github.com/wiegerw/nerva-colwise. Finally, the repository https://github.com/
wiegerw/nerva-sympy| makes use of both the column- and row-wise specifications.

2 Mathematical background

In this section we provide notational conventions, we provide definitions for the gradient and the Jaco-
bian, and a comprehensive table with matrix operations that are necessary for the execution of multilayer
perceptrons.

In the rest of this document we use the following notation. Vectors are denoted using lowercase symbols
x,y, z, and matrices using uppercase symbols X, Y, Z. The columns of a matrix X € R"™*™ are denoted as
x',..., 2", while the rows are denoted as x1,...,2,,. Occasionally, the subscript notation z; is also used to
denote element i of the vector x, but this will be made clear from the context. To distinguish between row
and column vectors, we denote their domains as R'™*™ and R™*!, respectively. We use the dot symbol - for
matrix multiplication and not for the dot product. This notation is used primarily to enhance the readability
of expressions.

In the context of neural networks, we typically use z, X for inputs, y,Y for outputs, z, Z for intermediate
values, and t,T" for targets. The number of inputs of a layer is denoted by D and the number of outputs
by K. The number of examples in a mini-batch is denoted by N. We follow the convention of the major
neural network frameworks where data is stored using a row layout. This means that by default z, y, and
z are considered row vectors, and each row of an input matrix X represents an example of a data set. For
example, if X € RN*P | then z; € R'*P represents the i-th example.

Definition 1 (Gradient). Let f : R™*" — R be a function with input X that has elements x;;, with
m,n € NT. Then the gradient Vx f is defined as

of(X) 9f(X)
8$11 8.’171n
Vxf(X)=| " S (1)
of(X) Of(X)
8$m1 men

Definition 2 (Gradient of the loss function). We consider neural networks with output Y € RN*K and
target T € RN*K . We assume that there is a fived loss function £ : RN*K x RNXK 5 R - sych that L(Y,T)
is the loss corresponding to the output Y, given the target T. We use the following shorthand notation for
the gradient of the loss:

DY =VyL(Y,T). (2)
IfY depends on a parameter Z, i.e. Y =Y (Z), then we define
DZ =V ,L(Y(Z),T). (3)
Definition 3 (Jacobian). Let f : R™ — R™ be a function with input x € R™. Then the Jacobian % 18
defined adl]
o1 on O
a—x(m) = : - : (4)
O fm () Ofm(x)
0x1 ox,

IWe use the convention that the Jacobian does not depend on whether = and f(x) are row vectors or column vectors. This
is consistent with SymPy, but other conventions are also in use.

https://github.com/wiegerw/nerva-tensorflow
https://github.com/wiegerw/nerva-torch
https://github.com/wiegerw/nerva-colwise
https://github.com/wiegerw/nerva-sympy
https://github.com/wiegerw/nerva-sympy

The execution of MLPs depends on a small number of matrix operations. In Table [I| we provide a
mathematical notation, a code representation, and a definition for the most important operations. These
operations are used in the implementation of activation functions, loss functions, and the feedforward and
backpropagation equations of neural network layers. Basic operations like matrix assignment, matrix index-
ing, and matrix dimensions are omitted, to keep the resulting code familiar to users of the respective Python
frameworks. There is some redundancy in the table, to allow for more efficient, or numerically stable imple-
mentations. We refrain from using broadcasting notation, as commonly found in frameworks like NumPy,
where arrays of different dimensions can be added, and use the standard notation of matrix calculus instead.
This approach with explicit dimensions is needed to validate the correctness using SymPy. For example, to
calculate the sum of elements in a column vector z € R"*!, we express it as the dot product 1, -z, with
1, =(1,...,1)T a column vector of ones.

3 Matrix operations

Table 1: An overview of matrix operations that are needed for the implementation of the class of MLPs
described in this paper. We assume that X,Y € R™*" and Z € R™**, where k,m,n € NT. Wherever
possible, we use m to denote the number of rows and n to denote the number of columns of a matrix or
vector. The function o is the sigmoid function as defined in section [f]

OPERATION CODE DEFINITION
0, zeros(m) m X 1 column vector with elements equal to 0

Oyn zeros(m, n) m X n matrix with elements equal to 0

1,, omnes(m) m X 1 column vector with elements equal to 1

1mn ones(m, n) m X n matrix with elements equal to 1

I,, identity(n) n X n identity matrix

X' X.T transposition

cX c¢cx*xX scalar multiplication, ¢ € R

X+Y X+Y addition
X-Y X-%Y subtraction
X-Z X@ZorX *xZ matrix multiplication, also denoted as X7

z yorzy dot(x,y) dot product, z,y € R™*! or z,y € R**"
X ®Y hadamard(X,Y) element-wise product of X and Y
diag(X) diag(X) column vector that contains the diagonal of X
Diag(z) Diag(x) diagonal matrix with z as diagonal, z € R**™ or z € R™*!

1; - X -1, elements_sum(X) sum of the elements of X
z-1) column_repeat(x, n) n copies of column vector z € R™*!

1y - row_repeat(x, m) m copies of row vector x € R*™

1) - X columns_sum(X) 1 X n row vector with sums of the columns of X

X -1, rows_sum(X) m X 1 column vector with sums of the rows of X
max(X)col columns max(X) 1 X n row vector with maximum values of the columns of X
max(X)row rowsmax(X) m X 1 column vector with maximum values of the rows of X
(14, - X)/n columns_mean(X) 1 x n row vector with mean values of the columns of X
(X -1,)/m rows mean(X) m X 1 column vector with mean values of the rows of X
f(X) apply(f, X) element-wise application of f : R — R to X

e exp (X) element-wise application of f : z — e* to X

log(X) log(X) element-wise application of the natural logarithm f : z — In(x) to X
1/X reciprocal(X) element-wise application of f: 2z — 1/z to X

VX sqrt (X) element-wise application of f: z — vz to X

X% inv_sqrt(X) element-wise application of f : z — /% to X
log(c(X)) log.sigmoid(X) element-wise application of f : z — log(co(z)) to X,

In Table 2| we provide implementations in several frameworks of the fundamental matrix-form operations
for multilayer perceptrons.

Operation | NumPy + JAX PyTorch TensorFlow Eigen
zeros(m,n) zeros((m,n)) zeros(m,n) zeros([m,n]) Zero(m,n)
ones(m,n) ones((m,n)) ones(m,n) ones([m,n]) Ones(m,n)
identity(n) eye(n) eye(n) eye(n) Identity(n,n)
X.T X.T X.T X.T X.transpose()
c*X c*X c*X c*X c*X

X+Y X+Y X+Y X+Y X+Y

X-Y X-Y X-Y X-Y X-Y

X*Z Xez Xz Xz X*Z
hadamard(X,Y) X*Y X*Y multiply(X,Y) X.array() * Y.array()
diag(X) diag(X) diag(X) diag_part(X) X.diagonal()
Diag(x) diag(x) diag(x.flatten()) diag(reshape(x,[-1])) x.asDiagonal()
elements_sum(X) sum(X) sum(X) reduce_sum(X) X.sum()
column_repeat(x,n) tile(x,(1,n)) x.repeat(1,n) tile(x,[1,n]) x.replicate(1,n)
row._repeat(x,m) tile(x,(m,1)) x.repeat(m,1) tile(x,[m,1]) x.replicate(m,1)

columns_sum(X)
rows_sum(X)
columns_max(X)
rows_max(X)
columns_mean(X)
rows_mean(X)
apply(f,X)
exp(X)

log(X)
reciprocal(X)
sqrt(X)
inv_sqrt(X)
log_sigmoid(X)

sum(X,axis=0)
sum(X,axis=1)
max(X,axis=0)
max(X,axis=1)
mean(X,axis=0)
mean(X,axis=1)
f(X)

exp(X)

log(X)

1/X

sqrt(X)
reciprocal(sqrt(X+e))
-logaddexp(0,-X)

sum(X,dim=0)
sum(X,dim=1)
max(X,dim=0).values
max(X,dim=1).values
mean(X,dim=0)
mean(X,dim=1)

f(X)

exp(X)

log(X)

1/X

sqrt(X)
reciprocal(sqrt(X+e))
-softplus(-X)

reduce_sum(X,axis=0)
reduce_sum(X,axis=1)
reduce_max(X,axis=0)
reduce_max(X,axis=1)
reduce_mean(X,axis=0)
reduce_mean(X,axis=1)
f(X)

exp(X)

log(X)

inverse(X)

sqrt(X)
reciprocal(sqrt(X+e))
-softplus(-X)

X.colwise().sum()
X.rowwise().sum()
X.colwise().maxCoeff()
X.rowwise().maxCoeff()
X.colwise().mean()
X.rowwise().mean()
X.unaryExpr(f)
X.array().exp()
X.array().log()
X.array().inverse()
X.array().sqrt()
reciprocal(sqrt(X.array()+e))
-loglp(exp(-X.array()))

Table 2: Implementation of matrix operations in NumPy, JAX, PyTorch, TensorFlow and Eigen.

We

assume that e is a given small positive constant that is used to avoid division by zero. Note that some of
the operations are located in Python submodules.

4 Layer equations

A major contribution of this paper is the following overview of the feedforward and backpropagation equations
of layers in matrix form. For each of the equations, the corresponding Python implementation is given.
For several equations, a derivation is included, while the correctness of the equations and derivations has
been validated using SymPy. All layers are implemented in our Nerva Python packages, and a validation of
all equations and derivations can be found in the tests directory of the nerva-sympy package. We consider
input batches X in row-wise layout, such that each row represents a single example. We use the following

notations:

— X € RN*D ig the input batch, where N is the number of examples and D is the input dimension.

— Y € RN*K ig the output batch, where K is the output dimension.

— W € REXD is the weight matrix that maps the input features to the output features.

— b e R*™XK ig the bias vector.

— 7 € RN*K {5 4 matrix with intermediate values.

8,7, € RYK are the parameters of batch normalization.

- aj,t;,a-,t. € R are the coefficients of an SReLU activation function.

—~ R € R¥XD is a dropout matrix.

Each of these matrices has a gradient with the same dimensions, denoted using the same symbol preceded
by D, for example, DX is the gradient corresponding to X. The implementation uses the same names. The
input X, and layer parameters like W, b and their gradients DX, DW, Db are stored in the attributes of a layer.
The only exception is the output Y and its gradient DY, which are stored in the X and DX attributes of the
next layer.

linear layer

FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Y=XWT+1x-b DW =DY' X
Db = 1), - DY
DX =DY -W
Y = X * W.T + row_repeat(b, N) DW

Db
DX

DY.T * X
columns_sum (DY)
DY *x W

activation layer

Let act : R — R be an activation function, for example relu.

FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Z=XW" +1x-b DZ = DY ®act'(Z)
Y = act(Z) DW=DZ" X
Db =1y -DZ

DX =DZ W
Z =X * W.T + row_repeat(b, N) DZ = hadamard(DY, act.gradient(Z))
Y = act(Z) DW = DZ.T * X

Db = columns_sum(DZ)

DX = DZ * W

srelu-layer
FEEDFORWARD EQUATIONS
Z=XW'"+1y5-b

Y =srelu(Z)

Z =X x W.T + repeat_row(b, N)

o
[}

apply(act, Z)

where

softmax layer
FEEDFORWARD EQUATIONS
Z=XWT +1x-b

Y = softmax(Z)

Z =X *x W.T + row_repeat(b, N)
softmax(Z)

<
]

Al

¥

AY

ij

j

T
T

BACKPROPAGATION EQUATIONS
DZ = DY @ srelu’(Z)

DW=DZ"-X
Db=1)-DZ
DX =DZ -W
Da; =15 - (DY ® AY) - 1
Da, =14 - (DY © A7) - 1
Dt =15 -(DY 0 T") - 1k
Dt, =14 - (DY @ T") -1k

DZ = hadamard(DY, apply(act_prime, Z))
DW = DZ.T * X

Db = sum_columns(DZ)

DX =DZ *x W

Al = apply(al, Z)

Ar = apply(ar, Z)

Tl = apply(tl, Z)

Tr = apply(tr, Z)

Dal = sum_elements(hadamard (DY, Al))
Dar = sum_elements(hadamard (DY, Ar))
Dtl = sum_elements(hadamard (DY, T1))
Dtr = sum_elements(hadamard (DY, Tr))

if Z;; <1t
otherwise
if Zij <tV ZU <t
otherwise
if Zij < 1
otherwise
if Z;; > t,

otherwise

BACKPROPAGATION EQUATIONS
DZ =Y ® (DY —diag(DY - Y ") -1f)
DW=DZ" X
Db=1y3 -DZ
DX =DZ-W

DZ

hadamard (Y,

DY - column_repeat(diag(DY * Y.T), K))

DW DZ.T * X
Db columns_sum(DZ)
DX =DZ x W

log-softmax layer

FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Z=XWT +1x-b DZ = DY — softmax(Z) ® (DY - 1k - 1)
Y = logsoftmax(Z2) DW=DZ"-X
Db=1y-DZ
DX=DZ-W
Z =X *x W.T + row_repeat(b, N) DZ = DY - hadamard(softmax(Z),
Y = log_softmax(Z) column_repeat (rows_sum(DY), K))
DWw = DZ.T * X
Db = columns_sum(DZ)
DX =DZ * W

batch normalization layer

FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
In - 13
R=X- - X DZ=(Ix-v)®DY
1 DB =1y -DY
Y= -diag(R'"R)" P N
N } Dy=1x-(Zo® DY)
Z=(Ix-2X"2)0OR 1)
DX == 1In-272
Y=(In-7)O0Z+1x-3 <N N)@
(N-Ix - 1In-1{)-DZ - Z® (1y - diag(Z" -DZ) "))
R = X - row_repeat(columns_mean(X), N) DZ = hadamard(row_repeat (gamma, N), DY)
Sigma = diag(R.T * R).T / N Dbeta = columns_sum(DY)
inv_sqrt_Sigma = inv_sqrt(Sigma) Dgamma = columns_sum(hadamard(Z, DY))
Z = hadamard(row_repeat (DX = hadamard(row_repeat(inv_sqrt_Sigma / N, N),
inv_sqrt_Sigma, N), R) (N * identity(N) - ones(N, N)) * DZ -
Y = hadamard(row_repeat(gamma, N), Z) + hadamard(Z, row_repeat(diag(Z.T * DZ).T, N)))

row_repeat (beta, N)

linear dropout layer

FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Y=XWTOR)+1x-b DW=(DY'-X)OoR"
Db = 1) - DY

DX =DY(W®R")

Y = X * hadamard(W.T, R) + row_repeat(b, N) DW = hadamard(DY.T * X, R.T)
Db = columns_sum(DY)
DX = DY * hadamard(W, R.T)

activation dropout layer

FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Z=XWTOR)+1x-b DZ = DY ®act'(Z)
Y = act(Z) DW= (DZ" - X)oR"
Db=1y-DZ

DX =DZ(W®R")
Z = X * hadamard(W.T, R) + row_repeat(b, N) DZ = hadamard(DY, act.gradient(Z))
Y = act(Z) DW = hadamard(DZ.T * X, R.T)

Db = columns_sum(DZ)

DX = DZ * hadamard(W, R.T)

4.1 Derivations

In this section, we give some derivations of the backpropagation equations. We give some applications of the
product rule and chain rule for vector functions, and show how some properties on the rows and columns of
a matrix can be generalized into matrix-form.

Lemma 1 (Product Rule for vector functions). The product rule for scalar functions u and v is given by
(uw-v) =u - -v+u-v.

It can be generalized to vector functions, but the result is sensitive to the orientation of the operands. In the
following, we give four concrete applications of the product rule for vector functions. Let x € RP, A € Rm*",
and h(z) = f(z)g(z) for m,n,p € N*T.

oh of .9y

Let f(x) € R™™! and let g(z) € R, then 9 =229 T oy (5)
Let f(x) € R'™" and let g(z) € R, then % = ging fT%. (6)
Let f(z) = A, and let g(x) € R™! then % = Ag—z. (7)
Let f(x) € R"™™™ and let g(z) = A, then % = AT%. (8)

Lemma 2 (Chain rule for vector functions). Let f : R™ — R™, let g : R™ — RP, and let h(z) = g(y) with
y = f(z). Then we have
Oh 0g Of
or dy O (9)
Jdr Oy Oz

Note that this equations holds irrespective of whether f(x) is a row or a column vector.

Property 1 (Matrix properties). Let X,Y,Z € R™*". We denote the i row of matriz A as a; and the j*
column of matriz A as a’. The element at position (i,j) of A is denoted as a;;. Below we give a number of
properties on the rows and columns of matrices, and the generalization of these properties into matriz-form.

If20 =2 ()T -y (1<j<n), thenZ=X® (1, diag(X"-Y)T). (10)
If20 =1, - ()" -y (1<j<n), then Z =1,, - diag(X"Y)T. (11)
Ifzl =210) (1<j<n), thenZ=X0o 1, -1 -Y) (12)
Ifzi=ai-y -y (1<i<m), thenZ=(diag(X - Y")-1)ov (13)
Ifzi=x;-y) -1) (1<i<m), thenZ=diag(X-Y")-1} (14)
Ifzi=ax; -1, -y; (1<i<m), then Z = (X -1,-1]) oY (15)

All properties have been validated with SymPy. Naturally there is a lot of symmetry between the row and
column properties. By means of example we will prove equation . From z; = z; -y, - y; we derive that
zij = (w; -y)yi; for 1 < j < n. Hence we can write Z = R ® Y, where R is defined using r;; = (z; -y,).
We observe that diag(X - Y ") = (21 -y ,...,2m -y,,)". From the definition of R we can see that it consists
of n copies of the column vector diag(X - Y "). Hence we have R = diag(X -Y) - 1]

linear layer

We have Y = X -W T +1x-b. Let z;,;, b; be the i*" row of X, Y, 1nx-bfor 1 <i <N, hence y; = ;W T +b;,
where b; = b. Furthermore, let w; be the j' row of W, and let e; be the i*" row of the unit matrix Iy. Let
LY)= Z?zl L(y;) be the corresponding loss. We calculate

- W, hence Dz; = Dy, - W

oL @Z8£8yk78£8yi8£

O0x; < Oy i Oy, O Oy
8£ B N~ 0L Oy @ - OL N oc -
— - Ig = ——, hence Db = 1y - DY
Z < Oy Ob Zl oy " ; Oy N
We have y, = 2, W' 4+ b and 88% = xy;e;, hence (16)
ij
oL . IL 6‘yk a,c
= = :c e, = J} (e

N K oL N
=>en) A > (e(DY T X); = (DY - X)),
= =1 k=1

k=1

This can be generalized to matrix equations: DX = DY - W, Db = 1111— -DY,and DW =DY T - X

log-softmax layer

We have Y = log-softmax(Z). Let y;, z; be the i*® row of Y, Z for 1 < i < N, hence y; = log-softmax(z;).
We calculate

oL @ oL 0 log-softmax(z;) ! oc (Lx — 1x - softmax(z;))

0z B 0y; 0z; ayz
<= Dz =Dy; - (Ix — 1k - softmax(z;)) = Dy; — Dy; - 1k - softmax(z;).

This can be generalized to matrices using property

DZ = DY — softmax(Z) ® (DY - 1 - 1) (17)

10

batch normalization layer

We will derive the equation for DX, which is the most complicated one. Following the approach of [Yehl7],
we first derive the equations for a single column. Let 27,77, 27 € RNX! be the j" column of X, R and Z,
and let o € R be the j" element of ¥, with 1 < j < D. Then we obtain the following equations:

) oI - 14 . In - 14)
rj:xjfiNNNuTJ:(ﬂN* NNN)':EJ (18)
T i
o= (r 1)\1 ! (19)
2=l g73 (20)
We calculate
07 ® orl . do~3 ® 1 c% do IR o8 (20T
T A e i S = A R G (21)
- "Nz (N-Iy — o 19 (ri)T) = "Nz ANy — 27 (29)T). (22)
Using the chain rule we find
oL @ OL 02 o3 o :
i 2] 927 D hence Dr’ = (N-Iy — zj(z])—r) - D2’ (23)
oL @ OL orl i In- 13 j
@ = %%, hence Da’ = (]IN — T) -Dr y (24)
where one needs to take into account that for a column vector x we have Dz = (%)T. Hence
1
) -3 In - 10 . .)
D = UN2 Iy — NN (N Iy — 2 - (7)) - D2
1 . .
—1 ,] In - 10 - 20« (29T .
:O' 2 .(N-HN—ZJ'(Z])T—lN'lg—F N IN % (Z))-Dz]
N N
{ In batch normalization the column sum 1y - 27 evaluates to zero. }
_1
- %'((N'HN*1N~11—\IF)~DijZj~(Zj)T'Dzj)
Using property we generalize this into matrix-form:
1
DX = (5 In-¥7%) @ ((NIy — Iy - 1{) - DZ ~ Z© (Iy - diag(Z" - DZ)")). (25)

For the remaining equations, let 1;, z;, B, v be the i'" row of Y, Z, 15 - 3, and 1y - for 1 < i < N, where
B; = B, and 7; = v. Hence y; = v; ® 2z; + 5;. From this it follows

oc oc
B Oy
oc or
v Oy © 5

which we can generalize into matrix-form: DB = 1) - DY and Dy = 13 - (DY ® Z).

11

5 Activation functions

In this section we give an overview of some commonly used univariate activation functions. These activation
functions are typically applied element-wise to the output matrix Y of a neural network.

NAME FUNCTION DERIVATIVE
0 ifz<0
ReLU relu(z) = max(0, x) relu’(z) = { ' E .
[Fuk75) 1 otherwise
, a ifr<oax
Leaky ReL.U leaky-relu(x) = max(ax, x) leaky-relu’(x) =)
Maal3] 1 otherwise
if 2 <0 if # <0
AlL-ReLU ([CMP21]) allrelu(z) = 4 T EST allrel’(z) =4 & ST
x otherwise 1 otherwise
tl+al(x—tl) ifz <t a fx<t
SReLU ([JXF™16]) srelu(z) = = ift; <z<t, srelu’(z) =<¢1 ifty <z <t,
tr+ap(z—1t.) ifx>t, a. ifxz>t,
Hyperbolic tangent tanh(z) = % tanh’(z) = 1 — tanh(z)?
et +e~ "
1
Sigmoid / logistic function o(xz) = e o' (z) =o(x)(1 - o(x))
[EDY*12) te

Note that Leaky ReLLU and All-ReLLU depend on a parameter a € R and SRelLU depends on four parameters
a, t;,ar, t. € R. N.B. The three cases of the SReLU function overlap if ¢; > ¢,.. We use the convention that
in such a case the first possible alternative must be chosen. For All-ReLLU and SReLU layers the sign of
the parameter « should be alternated. In a network with layers 1,2,3, ... the All-ReLU function should be
applied to the layers 2,3,4, ... with parameters —a, o, —a,

The SReLLU parameters ay, t;, a., t, are learnable parameters, i.e. they should be updated periodically based
on the values of their gradients with respect to the loss function. As initial values we take a;,t;, a,,t, =
0,0,0,1. This corresponds to the ReLLU function.

5.1 Softmax functions

In this section we give an overview of softmax functions and their derivatives, both for single inputs and for
batches. These equations are present in the activation function of softmax layers and in some of the loss
functions in section @ We use the same notation as before, where z € R'*P is a single input with dimension
D, and X € RN*P is an input batch, where N is the number of samples in the batch. We denote the rows
of X as x1,...,ZN.

Below an overview of softmax functions and their derivatives is given. Equations in matrix-form are only
given if they are needed later on. Note that the function log-softmax is defined using

log-softmax(x) = log(softmax(z)).

12

VECTOR FUNCTIONS

61?

MATRIX FUNCTIONS

1
softmax(z) = softmax(X) = eX ® <eX-1D . 15)

e”-lD

eZ

1
stable-softmax(x) = stable-softmax(X) = ¢Z ® < 71 1];)
e” - 1p

e? - 1p

log-softmax(x) = 2 — log(e” - 1p) - 1) log-softmax(X) = X —log(eX - 1p) - 1}

stable-log-softmax(x) = z —log(e” - 1p) - 11, stable-log-softmax(X) = Z — log(e? - 1p) - 17,
where

z =z — max(x) - 1]
Z =X —max(X)row - lg.

The derivatives of the softmax functions are given by

2softmax(:::) = gstable—softmax(x) = Diag(softmax(z)) — softmax(z) " - softmax(z), (26)
x x
2Iog—softmax(a:) = 2stable—Iog—softmax(:n) =Ip — 1p - softmax(z) (27)
Oz Ox
5.2 Derivations
log-softmax
Let y(x) = softmax(z), then we have
8%3 log (softmax(x)) 2] gy log(y)%softmax(x)
7 L. 1 .
=’ Diag(~) - (Diag(y) — ' y)
Y (28)

=Ip — Diag(y)y 'y
=Ip—-1p-y
=1Ip — 1p - softmax(z).

6 Loss functions

In this section we give an overview of some loss functions and their gradients, both for single inputs and for
batches. We use the following notations:

1. y € R1*K i5 a single output, where K is the output dimension.
2. t € R1*K ig a target for a single output y.
3. Z € RN*K ig an output batch, where N is the number of examples in the batch.

4. T € RN*K contains the targets for an output batch Y.

13

squared error loss

(29)

The mean squared error loss is a scaled version of the squared error loss.

Lsp(Y,T)

Lyvse(Y,T) = KN

cross-entropy loss

Leg(y,t) = —t-log(y) "

1

Lep(Y,T) = ~1% - (T ©log(Y)) - 1k

1
Vyﬁc]g(K T) =-To ?

softmax cross-entropy loss

Lscr(y,t) = —t - log-softmax(y) "

VyLsce(y,t
Lsce(Y,
Vy Lscr(Y,

)

) =t- 1k - softmax(y) — t

) = —13 - (T ® log-softmax(Y")) - 1k
) = softmax(Y) @ (T - 1k - 1) = T

T (31)
T

Note that if ¢ is a one-hot encoded target (e.g. in case of a classification problem), it is a vector consisting
of one value 1 and all others values 0. In other words we have ¢ - 1x = 1, hence in this case the gradients can
be simplified to

VyLscr(y,t) = softmax(y) — t
Vy Lsce(Y,T) = softmax(Y) — T

logistic cross-entropy loss

Lrcr(y,t) = —t-log(o(y))
VyLice(y,t) =t©o(y) —t
T (32)
Lice(Y,T) = -1y - (T'© (log(a(Y))) - 1k
VyLice(Y,T)=To©a(Y)-T

14

negative log-likelihood loss

Lain(y,t) = —log(y-t")
1
VyLnin(y,t) = Ty -t
33
Laen(Y,T) = =1y - (log((Y © T) - 1k)) - 1k 33)
_ 1 T
VyENLL(Y, T) = — <(Y®T)1K . 1K> oT
6.1 Derivations
cross-entropy loss
VyLon(y,t) = — (¢ log(y)") @~ - Disg(2) = 10 2 (34)
Y ’ dy y y

softmax cross-entropy loss

VyLscr(y,t) = —6%(75 - log-softmax(y) ") & —t - %Iog—softmax(y) (35)

2 (Ix — 1k - softmax(y)) =t - 1k - softmax(y) — ¢
If the target t is a one-hot encoded vector, we have ¢ - 1x = 1. In that case the gradient simplifies to

Vy‘CSCE—one—hot (yv t) = SOftmaX(Y) -t
Using property we can generalize equation (35)) to

Vy Lsce(Y,T) = softmax(Y) © (T - 1k - 1IT<) —T.

logistic cross-entropy loss

wmﬁw#%@mmmww~+ﬁmwm
= —t-Diag(l —o(y)) =t ©oly) — t,

where we used the well known fact that in the univariate case < log(o(t)) = 1 — log(o(t)).

7 Weight initialization
The initial values of the weights in linear layers must be carefully chosen, as they may have a large impact

on the performance of a neural network [NBS22]. Typically, these values are randomly generated on the
basis of specific probability distributions. In this section, we give a few commonly used distributions.

15

NAME DISTRIBUTION
Uniform U(a,b)
1

Xavier [GB10] U(f—D,

V6 6
VD+K VvD+K

He [HZRSI5| N(0, \/g),

where D is the number of inputs and K the number of outputs of the layer to which the weight matrix
belongs. Furthermore, U(a, b) is the uniform distribution in a given interval [a, b], and N (u, o) is the normal
distribution with mean p and standard deviation o.

Unlike weights, the initial values of bias vectors are typically set to a small constant or zero rather than
drawn from probability distributions. However, the Xavier weight distribution can also be used.

5-

Normalized Xavier [GBI10] U(—),

8 Optimization

In the optimization step, the parameters 6 of a layer are updated based on the value of their gradient D6
with respect to a given loss function. The goal of this step is to decrease the value of the loss. In this section,
we give three common choices for optimization methods: gradient descent, momentum, and Nesterov. All
take a learning rate parameter n as input, which is used to control the size of the optimization step. Our
equations are equivalent to the ones in Keras [CT15|, but presented in matrix form. We use a prime symbol
to denote updated values.

(GRADIENT DESCENT MOMENTUM NESTEROV
0 =0+ A 0 =0+pu-Ay—n-DO

Both momentum and Nesterov depend on a parameter 0 < p < 1. Furthermore, they store an additional
parameter Ay with the same dimensions as 6. This parameter is updated in each optimization call and
initially contains only zeros.

9 Learning Rate Schedulers

We define a learning rate scheduler as a function 7 : N — R that returns the learning rate at optimization
step ¢. We assume that 7 is a given initial learning rate.

ForMmuLA DESCRIPTION
1N =N A constant scheduler with initial value 7yg.
Ni41 = 1_:77; A time-based scheduler with decay parameter d.
-1
n =10 - al=] A step-based scheduler with change rate d and drop rate 7.
n; = noe~ 4 An exponential scheduler with decay parameter d.

ki
= nofzj:1 SR multi-step scheduler with decay parameter I' and milestones {m;,...my}.

16

References

[C+15]
[CMP21]

[Fuk75]

[GB10]

[HDY*12]

[HZRS15]

[JXF*16]

[Maal3]
INBS22]

[Yeh17]

Francois Chollet et al. Keras. https://keras.io, 2015.

Selima Curci, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Truly sparse neural networks
at scale. CoRR, abs/2102.01732, 2021.

K. Fukushima. Cognitron: a self-organizing multilayered neural network. Biological Cybernetics,
20:121-136, 1975.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249-256, Chia Laguna Resort, Sardinia, Italy, 13-15 May
2010. PMLR.

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury.
Deep neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29(6):82-97, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In 2015 IEEFE International Conference
on Computer Vision (ICCV), pages 1026-1034, 2015.

Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng Yan. Deep
learning with s-shaped rectified linear activation units. In Dale Schuurmans and Michael P.
Wellman, editors, AAAI pages 1737-1743. AAAI Press, 2016.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

Meenal V. Narkhede, Prashant P. Bartakke, and Mukul S. Sutaone. A review on weight initial-
ization strategies for neural networks. Artif. Intell. Rev., 55(1):291-322, 2022.

Chris Yeh. Deriving Batch-Norm Backprop Equations. https://chrisyeh96.github.io/2017/
08/28/deriving-batchnorm-backprop.html, 2017.

17

https://keras.io
https://chrisyeh96.github.io/2017/08/28/deriving-batchnorm-backprop.html
https://chrisyeh96.github.io/2017/08/28/deriving-batchnorm-backprop.html

A Column-wise layer equations

A major contribution of this paper is the following overview of the feedforward and backpropagation equations
of layers in matrix form. For each of the equations, the corresponding Python implementation is given.
For several equations, a derivation is included, while the correctness of the equations and derivations has
been validated using SymPy. All layers are implemented in our Nerva Python packages, and a validation of
all equations and derivations can be found in the tests directory of the nerva-sympy package. We consider
input batches X in row-wise layout, such that each row represents a single example. We use the following
notations:

— X € RP*N ig the input batch, where N is the number of examples and D is the input dimension.
— Y € RE¥*N i5 the output batch, where K is the output dimension.

— W € RE¥XD is the weight matrix that maps the input features to the output features.

— b€ REX! is the bias vector.

— Z € R¥XN i a matrix with intermediate values.

~ B,7, % € REX! are the parameters of batch normalization.

- ay,t;,a-,t. € R are the coefficients of an SReLU activation function.

— R € REXD s a dropout matrix.

Each of these matrices has a gradient with the same dimensions, denoted using the same symbol preceded
by D, for example, DX is the gradient corresponding to X. The implementation uses the same names. The
input X, and layer parameters like W, b and their gradients DX, DW, Db are stored in the attributes of a layer.
The only exception is the output Y and its gradient DY, which are stored in the X and DX attributes of the
next layer.

linear layer
FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Y=WX+b-14 DW =DY - X"
Db=DY -1y
DX =WTDY

DY * X.T
rows_sum (DY)
W.T *x DY

Y = W * X + column_repeat (b, N) DW
Db
DX

activation layer

Let act : R — R be an activation function, for example relu.

FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Z=WX+b-1y DZ = DY ®act'(Z)
Y = act(Z) DW =DZ-X"
Db=DZ- 1y

DX =W'DZ
Z =W * X + column_repeat (b, N) DZ = hadamard(DY, act.gradient(Z))
Y = act(Z) DW = DZ = X.T

Db = rows_sum(DZ)

DX = W.T * DZ

18

srelu-layer
FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Z=WX+b-1} DZ = DY @ srelu’(2)
Y = srelu(Z) DW=DZ-X"
Db=DZ-1x
DX =wW'DZ
Da; =15 - (DY © Al
Da, =15 - (DY ® A") - 1y
Dt; =15 - (DY © T -1x
Dt,=14-(DYOT") 1x

1y

Z =W * X + column_repeat (b, N) DZ
act(Z) DW

hadamard (DY, act.gradient(Z))

DZ * X.T

Db = rows_sum(DZ)

DX W.T * DZ

Dal = elements_sum(hadamard (DY, A1(Z)))
Dar = elements_sum(hadamard (DY, Ar(Z)))
Dtl = elements_sum(hadamard (DY, T1(Z)))
Dtr = elements_sum(hadamard (DY, Tr(Z)))

=<
1]
]

where

! Zij — tl if Zij S tl
Aij]
otherwise

A".‘. =

0
0 ifZijStl\/Zij<tT
ij 7z

i —tr otherwise
1— a; if Zij § tl

gl 0 otherwise

— Qp if Zij Z tr

- 1
0 otherwise

¥

softmax layer
FEEDFORWARD EQUATIONS BACKPROPAGATION EQUATIONS
Z=WX+b-1} DZ =Y ® (DY — 1k - diag(Y ' DY) ")
Y = softmax-colwise(Z) DW=DZ-X"
Db=DZ 1y
DX =w'Dz

N
]

W * X + column_repeat(b, N) DZ
softmax_colwise(Z) DW
Db
DX

hadamard(Y, DY - row_repeat(diag(Y.T * DY).T, K))
DZ * X.T

rows_sum(DZ)

W.T * DZ

-
1]
]

19

log-softmax layer
FEEDFORWARD EQUATIONS
Z=WX+b-1}

Y = logsoftmax-colwise(Z)

W *x X + column_repeat(b, N)
log_softmax_colwise(Z)

batch normalization layer
FEEDFORWARD EQUATIONS
Iy 1%
N)
5= Lai (R-R")
= —dia .
e

R=X (Iy—

Z=(2"2-1)0oR
Y=(-10)0Z+8-1y

R = X - column_repeat(rows_mean(X), N)

Sigma = diag(R * R.T) / N

inv_sqrt_Sigma = inv_sqrt(Sigma)

Z hadamard(column_repeat (inv_sqrt_Sigma, N), R)
Y

linear dropout layer
FEEDFORWARD EQUATIONS
Y=(WoORX+b-1y

Y = hadamard(W, R) * X + column_repeat(b, N)

activation dropout layer
FEEDFORWARD EQUATIONS
Z=WOoRX+b-1§

Y =act(2)

hadamard(W, R) * X + column_repeat(b, N)
act(Z)

20

BACKPROPAGATION EQUATIONS
DZ = DY — softmax-colwise(Z) - 1x - 15 - DY

DY - hadamard(softmax_colwise(Z), row_repeat(columns_sum(D

DW=DZ -XT
Db=DZ-1n
DX =WTDZ

DZ =

DW = DZ *x X.T

Db = rows_sum(DZ)

DX = W.T *x DZ

BACKPROPAGATION EQUATIONS

DZ = (y-14) ®DY
DS =DY -1y
Dy=(DY®Z)- 1y

DX = (

1 1
— .2
N

1) © (DZ- (N -Iy — 1y -1%) — Z © (diag(DZ - :

DZ = hadamard(column_repeat(gamma, N), DY)

Dbeta
Dgamma

rows_sum(DY)
rows_sum(hadamard (DY, Z))

DX = hadamard(column_repeat(inv_sqrt_Sigma / N, N), hadamard(Z,

hadamard(column_repeat (gamma, N), Z) + column_repeat(beta, N)

BACKPROPAGATION EQUATIONS

DW=DY-X")oR
Db=DY -1y

DX = (W o R)'DY

DwW
Db
DX

hadamard (DY
rows_sum (DY)
hadamard (W,

* X.T, R)

R).T * DY

BACKPROPAGATION EQUATIONS
DZ = DY ®act'(Z)
DW=(DZ-X")oR
Db=DZ -1y
DX =(WoR)'DZ

DZ
DW
Db
DX

hadamard (DY,
hadamard (DZ
rows_sum(DZ)
hadamard (W,

act_gradient(Z))
* X.T, R)

R).T * DZ

B Column-wise softmax functions

In this section we give an overview of softmax functions and their derivatives, both for single inputs and for
batches. These equations are present in the activation function of softmax layers and in some of the loss
functions in section [} We use the same notation as before, where 2z € RP* is a single input with dimension
D, and X € RP*N is an input batch, where N is the number of samples in the batch. We denote the columns
of X by z!,..., 2N,

Below an overview of softmax functions and their derivatives is given. Equations in matrix form are only
given if they are needed later on. Note that the function log-softmax is defined using

log-softmax(z) = log(softmax(z)).

VECTOR FUNCTIONS MATRIX FUNCTIONS
e’ x 1
softmax(z) = T oe softmax(X) =e” © | 1p - T ox
D D
table-soft - table-softmax(X) = ¢ © (1 !
stable-softmax(z) = T o stable-softmax(X) =¢" ® (1p - W
log-softmax(z) = z — 1p - log(1 - €%) log-softmax(X) = X — 1p - log(1y - €¥)

stable-log-softmax(x) = z — 1p - log(1}, - €*) stable-log-softmax(X) = Z — 1p - log(1y - %),

where
z =z —max(z) - 1p
Z =X — 1p - max(X)col.

C Column-wise loss functions

In this section, we give an overview of some loss functions and their gradients, both for single inputs and for
batches. We use the following notations:

1. y € REX1 i5 a single output, where K is the output dimension.
2. t € RE*1 ig a target for a single output y.
3. Z € RE*N ig an output batch, where N is the number of examples in the batch.

4. T € REXN contains the targets for an output batch Y.

squared error loss

Lse(y,t) = (y—1)" (y—1)
VyLsg(y,t) =2(y — 1)
T (36)
Lsp(Y,T) =1k - (Y -T)o (Y =T)) -1y
VyLsp(Y,T)=2(Y —T)

The mean squared error loss is a scaled version of the squared error loss.

Lsp(Y,T)

Lyvse(Y,T) = K. N

21

cross-entropy loss

Lcg(y,t) = —t' log(y)

1
VyLce(y,t) = -t O "

(37)
Lcp(Y,T) =15 - (T ®log(Y)) -1y
1
VyLee(Y,T)=-T0® v
softmax cross-entropy loss
Lscr(y,t) = —t " - log-softmax(y)
VyLscr(y,t) = 1 -t - softmax(y) — ¢ (38)
Lscr(Y,T) = —1j - (T @ log-softmax(Y)) - 1y
VyLsce(Y,T) = 1) - (softmax(Y) ® (1g -1 -T)) -1y = T

Note that if ¢ is a one-hot encoded target (e.g. in case of a classification problem), it is a vector consisting
of one value 1 and all others values 0. In other words we have 1} - ¢ = 1, hence in this case the gradients
can be simplified to

VyLscr(y,t) = softmax(y) — t (39)
VyLsce(Y,T) = softmax(Y') — T (40)
logistic cross-entropy loss
Lrcn(y,t) = =t -log(a(y))
VyELCE(y, t) t® J() t (41)
Lrce(Y,T) =1 - (T ® (log(e(Y))) - 1y
VyLicE (Y, T) TO J(Y) T
negative log-likelihood loss
Lnii(y.t) = —log(y't)
1
VyLain(y,t) = — -t
" (12)
Lnin(Y, T) = —(log(1 - (Y © T)))
1
L Y, T)= |1k - T
VyLnin(Y,T) <K IIT(-(Y(DT))@

22

	Introduction
	Mathematical background
	Matrix operations
	Layer equations
	Derivations

	Activation functions
	Softmax functions
	Derivations

	Loss functions
	Derivations

	Weight initialization
	Optimization
	Learning Rate Schedulers
	Column-wise layer equations
	Column-wise softmax functions
	Column-wise loss functions

